自動車
自動車(じどうしゃ、英:car、米英語:automobile、米国の口語:auto)とは、原動機の動力によって車輪を回転させ、レールや架線を用いずに路上を走る車のことである。
概要
大辞泉には、原動機の動力によって車輪を回転させ、レールや架線を用いないで路上を走る車、とある。鉄道とは異なり、専用の軌道を必要としないので、進路の自由度が高いという特徴がある。
角川の1989年の国語辞典には「発動機の動力で軌道なしに走る四輪車」と記載されている。 一般的には、車輪の数が三輪以上で、かつ乗員が車室内に備えられた座席に座る構造を備えたものが「自動車」として認識されている。ただし、3輪の扱いは微妙で、法令上の規定・扱いは国ごとに異なる。(#分類参照)
英語の automobile はフランス語を語源としている。日本語の自動車という語は、先述の automobile(オートモービル)に由来しており、auto は「みずから」mobile は「動くもの」という意味を持つことから作られた。なお、同じ漢字圏でも中国語では別の語・汽車(繁体字)/汽车(簡体字)を用い、自動車という語は自動運転車の意味になる。また、英語で単に car といった場合、馬車や鉄道車両なども含めた車両全般を指す。
自動車を動かすこと・操ることを運転という。自動運転技術も研究されている。基本的には人や荷物を運ぶ実用的な道具として用いられるものではあるが、旅行のため、また運転を楽しむため(スポーツ・ドライビング)に使われたりするほか、所有して整備すること("機械いじり")が目的の趣味として扱われたり、高級車の場合はステータスシンボルとして利用したり、または資産や投資対象として保有される場合もある。
構造
自動車の構造はその歴史のなかで様々な形態が現れ、変遷してきた。ここでは現在市販されている自動車として一般的なものを示す。したがって、いくつかの自動車には例外があり、特に競技用や工作用など、特殊な用途に特化したものについては構造が大きく異なる例もある。
車体構造
車体の強度部材に用いられる材料は鋼鉄が主流で、近年ではアルミニウム合金や炭素繊維強化プラスチックなどの複合材料を用いたものも市販されるようになってきている。骨格部材以外のパネル部分には合成樹脂を用いる例も増えてきている。
構造は大きく分けてフレーム形式とモノコック形式とに分けられる。フレーム形式は独立した骨格部材の上に、車室を構成する構造物が載せられたもので、古くから自動車の車体構造として用いられ、現在でも貨物車を中心に採用されている。モノコック形式は車室を構成する外殻自体が強度部材として作られた構造で、20世紀半ば頃から自動車の車体構造として普及しはじめて、現在の乗用車のほとんどで採用されている。
原動機
現在は内燃機関か、電気モーターを用いるものが主流である。内燃機関では、ピストンの往復運動をクランクシャフトで回転運動に変換して出力するディーゼルエンジンやガソリンエンジンなどのレシプロエンジンが一般的である。それぞれに4サイクルと2サイクルがあるが現在では4サイクルが主流となっている。火花点火機関の燃料にはガソリンが用いられるのが主流となっているが、環境性能や単価を理由に液化石油ガス(LPG)や液化天然ガス(LNG)、エタノール等のアルコール燃料が用いられる場合もある。近年では、内燃機関と電気モーターを組み合わせたハイブリッドカー、電気自動車などが普及してきている。
動力伝達
動力は、ガソリン自動車の場合は、原動機が効率的に出力を発揮する回転速度から、走行に適した回転速度へと変速機によって減速される。変速機は、運転者が複数の減速比から選択して操作するマニュアルトランスミッション(MT)と、自動的に選択または変化するオートマチックトランスミッション(AT)に大別できる。MTは基本的に減速比を切り替える際などにはクラッチを操作する必要があるが、このクラッチ操作を自動化したものはセミオートマチックトランスミッションと呼ばれる。近年は、MTの基本構造を持ちながらクラッチ操作と変速操作が自動制御された、自動制御式マニュアルトランスミッション (AMT)も普及し始めている。 電気自動車の場合は、原動機の効率的な回転速度の範囲が広いため減速比を切り替えない変速機を採用し、原動機を逆回転させることが可能なので後退ギアを持たない場合がほとんどである。
マニュアルトランスミッションの場合、前進の変速比は4段から8段程度が一般的だが、副変速機を用いて変速段数を2倍とする例も貨物車を中心に少なくない。
オートマチックトランスミッションは、トルクコンバータとプラネタリーギアを組み合わせたものが広く普及している。日本の乗用車では、CVTと呼ばれる無段変速機の採用例が増えてきている。いずれの方式においても、運転者の操作によって「Lレンジ」などのように減速比の範囲を限定する機構や、「マニュアルモード」などと呼ばれる任意の減速比に固定できる機構を備えている。
セミオートマチックトランスミッションは日本の法規ではAT車に分類され、日本車の例ではトヨタ・MR-SのシーケンシャルMTがある。
操舵装置
操舵は前輪の方向を変えて車体を旋回させる前輪操舵方式が一般的で、その機構全体を指してステアリングと呼ぶ。操作部を「ハンドル」あるいは「ステアリング・ホイール」と呼ぶ。ハンドルの回転はボール・ナットやラック・アンド・ピニオンなどの機構を介して車輪を左右に押す作用に換えられる。近年は油圧や電動モーターを用いて運転者のハンドル操作を助力するパワーステアリングが広く普及している。
旋回時の各瞬間に、それぞれの車輪がその動いている方向を向くようにすると、前輪の左右では舵角が異なる。例えばハンドルを右に切ると右タイヤの方が舵角が大きくなる。これについての機構をアッカーマン機構と呼ぶ。
制動・拘束装置
ブレーキの操作は、足踏み式のペダルで行うものがほとんどである。ペダルに加えられた力は油圧や空気圧を介してブレーキ装置に伝達し、摩擦材を回転部分に押しつけ、運動エネルギーを熱エネルギーに変換してスピードを落とす。市販車のほとんどが、エンジンの吸気管負圧や空気圧を利用した、ペダル踏力を軽減する倍力装置を有している。
駐車時に車体が動き出さないように拘束するパーキングブレーキはワイヤ式または空気式のものが多い。乗用車の場合はブレーキ装置を制動用のものと共用する構造がほとんどであるが、希に制動用のディスクブレーキの内周に拘束用のドラムブレーキを備える場合がある。貨物車ではミッション(変速機)出力部にドラムブレーキを備える例や車輪にパーキング用の機構を備える例が多い。
下り坂などで、フットブレーキに頼り過ぎるとフェード現象やベーパーロック現象が起き、制動力が著しく低下してしまうことがある。これらを防ぐためにエンジンブレーキを利用することが運転免許教習でも指導されているが、エンジンブレーキの効果が得られにくい大型の貨物車では排気ブレーキやリターダを搭載する車種も多い。
高速からの制動には、放熱性に優れるディスクブレーキが有効であるが、重量が大きい車両の制動や、勾配での駐車などには、自己倍力作用の働きで、拘束力の大きいドラムブレーキが有利となる。
運転装置
運転者の座席は座部と背もたれを備えた椅子形のものが主流である。運転席の正面には操舵用のハンドルとアクセルペダルとブレーキペダル、あるいはクラッチペダルが備えられているのが標準的な自動車の構造である。ハンドルは円形が一般的だが、オート三輪では棒状のハンドルも存在した。また、近年は楕円形のハンドルを採用している車種もある。駐車ブレーキを操作する装置は、レバーを引き上げる方式のものが主流であるが、古いトラックやワンボックスカーでは杖状のレバーを車体前方の奥から手前に引き寄せる方式のものもある。また、近年では足踏み式のものや電気的に作動する押しボタン式も採用されるようになった。変速機の操作レバーはMTの場合はシフトレバー、ATの場合はセレクトレバーと呼ばれる。いずれの場合も運転席の脇、車体中央側の床に設置されているフロアシフトが大半を占める。古いタクシーやトラック、ワンボックスカーではステアリングコラムにシフトレバーを設置したコラムシフトのMTも多く存在した。現在のAT車ではステアリングコラムにセレクトレバーを備える車種はミニバンを中心に珍しくないものとなっている。近年はインストルメントパネルにセレクトレバーを配置したものも多い。
日本の自動車保有台数
日本では1956年(昭和31年)には戦後の復興を遂げ「もはや戦後ではない」といわれるようになり、前年1955年には通産省が「国民車構想」を発表した。1958年にスバル・360が発売され60年代前半には各社から軽自動車が発売された。1966年(昭和41年)は「マイカー元年」と呼ばれトヨタ・カローラ・日産・サニーなどの大衆車が発売され自動車が普及し始めた。
1966年のトラック・バスなどの大型車も含めた自動車保有台数は約884万台で、翌67年には1095万台、1971年に2045万台、1982年に4130万台、1997年に6984万台となった以降は微増となり[43]2004年以降は7500万台前後で推移し、2013年は7609万台であった。この保有台数は国別では米国、中国に次ぐ3番目で、人口あたりの保有台数では米国や西ヨーロッパ諸国とほぼ同率である。2030年にかけては海外では引き続き増加していくが、日本では微減すると予想されている。
60年代後半からの急激な自動車の増加に対して道路整備は立ち遅れ、各地で交通渋滞や交通事故の増加が問題となった。また排気ガスによる大気汚染も70年代に深刻化した。日本においては1970年代から高速道路(高規格幹線道路)の整備が始まったが、急増する保有台数に追いついておらず、日本の高速道路の整備状況は米国とはもちろん、ドイツ、フランス、中国、イギリス、韓国よりも低い水準である。
なお二輪車では、原付を除く125cc超の二輪車は1966年には約88万台であったが、2013年には125cc超が4倍の約354万台となった他、原付第一種が666万台、第二種が163万台で二輪車の合計は1182万台であった。
2013年の四輪と二輪の合計は8791万台で国民1.4人に1台の普及率となっている。
20世紀末から日本の登録台数は頭打ちであるが、小型車、特に軽自動車がシェアを拡大してきている。軽自動車は90年代から着実に台数を伸ばしている。
都道府県別の自動車普及率
2013年の日本の自動車普及率は対人口では1台あたり1.7人、乗用車に限ると2.1人であり、これは100人あたり59.7台、46.6台となる13年の世帯あたりの自家用乗用車(軽自動車も含む)の普及率をみると、日本平均は1世帯あたり1.08台で各家庭にほぼ1台の割合となっている。世帯あたりの人数は、2010年では最大が山形県の3.16人で最低が北海道の2.27人で全国平均は2.59人であった。
世帯ベースで各地域をみると保有台数の多い県は上位10地域で、福井県(1.77台)、富山県(1.73台)、群馬県(1.68台)、山形県(1.68台)、岐阜県(1.65台)、栃木県(1.65台)、茨城県(1.63台)、長野県(1.59台)、福島県(1.56台)、新潟県(1.56台)などで、その他の大半の県で1台以上となっている。1台を切るのは5地域のみで、少ない方から東京都(0.48台)、大阪府(0.68台)、神奈川県(0.75台)、京都府(0.86台)、兵庫県(0.94台)と、当然ではあるが、公共輸送機関の発達した人口密度の高い(人口都市集中の激しい)都道府県で保有台数が少なくなっている。なおこの5都府県に続いてすくないのが北海道(1.008台)、千葉県(1.02台)であった。国土面積の約2割以上を占める広大な北海道で世帯当たりの保有数が少ないのは世帯あたりの人数が最小であることも影響している。
登録台数予測
将来の登録台数予測はいくつかの機関から出されており、2030年の自動車登録台数は17億から20億台との推定が出ている[31]。自動車は2030年にかけて中国、中近東、インドで大きく普及し、総普及台数は17億台に達すると見られている。2050年には25億台となるとの予測も出されている。
二輪車も2010年の約4億台から2030年には9億台へ達すると推定されている。
仮に中国で乗用車の普及率が先進国並の2人に1台となると2012年時点の人口13.4億人では6.7億台となり、約6億台が増加することとなる。これは2013年の世界の自動車生産実績8730万台の約7年分に相当し、2013年の中国の自動車生産実績2212万台の27年分である。
フロントガラス
フロント‐ガラス
《〈和〉front+glass〈オランダ〉》自動車などの前面にある防風用ガラス。フロントグラス。
[補説]英語ではwindshieldまたはwind-screen
〔和 英 front+オランダ glas〕
自動車の運転席の前面にあるガラス。
リペア
リペア(repair)
[名](スル)修理。修繕。手直し。復旧作業。
リペア【repair】
①
修理すること。修繕すること。
②
回復すること。取り戻すこと。
ガラス
ガラス(硝子、オランダ語: glas、英語: glass)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。
昇温によりガラス転移現象を示す非晶質固体。そのような固体となる物質。このような固体状態をガラス状態と言う。結晶と同程度の大きな剛性を持ち、粘性は極端に高い。非晶質でもゴム状態のように柔らかいものはガラスとは呼ばない。詳しくは「ガラス転移点」を参照のこと。
古代から知られてきたケイ酸塩を主成分とする硬く透明な物質。グラス、玻璃(はり)、硝子(しょうし)とも呼ばれる。「硝子」と書いて「ガラス」と読ませる事もよくある。化学的にはガラス状態となるケイ酸化合物(ケイ酸塩鉱物)である。他の化学成分を主成分とするガラスから区別したい場合はケイ酸ガラスまたはケイ酸塩ガラスと言う。いわゆる「普通のガラス」であるソーダ石灰ガラスのほか、ホウケイ酸ガラスや石英ガラスも含まれる。本項目ではこの物質について主に記述する。
ケイ酸塩以外を主成分とする、ガラス状態となる物質。ケイ酸ガラスと区別するために物質名を付けて○○ガラスと呼んだりガラス質物質と呼んだりする。アクリルガラス、カルコゲンガラス、金属ガラス、有機ガラスなど。
語源的にはケイ酸塩ガラスの固体状態を他の物質が取っている場合をもガラスと呼ぶようになったものである。日本語のガラスの元になったオランダ語glasの発音は、英語のglass同様グラスに近いが(より近いカタカナ表記は「フラス」。オランダ語のgはのどを震わせる発音。英語・ドイツ語とは異なる)、日本語化した時期が古いため、ガラスとなった。日本語での「グラス」は多くの場合はケイ酸塩ガラスでできた[独自研究?]コップの意味になる。
ガラスには多くの種類があるが、その多くは可視光線に対して透明であり、硬くて薬品にも侵されにくく、表面が滑らかで汚れを落としやすい。このような特性を利用して、窓ガラスや鏡、レンズ、食器(グラス)など市民生活及び産業分野において広く利用されている。近代以前でも装飾品や食器に広く利用されていた。また金属表面にガラス質の膜を作った「琺瑯(ほうろう)」も近代以前から知られてきた。
ガラスの表面に細かな凹凸を付けたすりガラスや内部に細かな多数の空孔を持つ多孔質ガラスは、散乱のために不透明である。遷移金属や重金属の不純物を含むガラスは着色しており、色ガラスと呼ばれる。
2002年(平成14年)の統計によれば日本だけでも建築用に3,900億円、車両用に1,700億円、生活用品に3,000億円、電気製品等に8,300億円分も出荷されている。
ガラスの歴史
概説
もともとは植物の灰の中の炭酸カリウムを砂の二酸化ケイ素と融解して得られたので、カリガラスが主体であった。灰を集めて炭酸カリウムを抽出するのに大変な労力を要したのでガラスは貴重なものであり、教会の窓、王侯貴族の食器ぐらいしか用いられたものはなかった。産業革命中期以降、炭酸ナトリウムから作るソーダ石灰ガラスが主流になった。炭酸ナトリウムはソルベー法により効率よく作られるようになったが、現在は天然品(トロナ)を材料に用いることもある。天然の炭酸ナトリウム産地としては米国ワイオミング州グリーン・リバーが一大産地であり、世界中の天然品需要の大半をまかなっている。埋蔵量は5万年分あるとされている。
ガラス製造の開始
ガラスの歴史は古く、紀元前4000年より前にエジプトやメソポタミアで二酸化ケイ素(シリカ)の表面を融かして作製したビーズが始まりだと考えられている。当時はガラスそれ自体を材料として用いていたのではなく、陶磁器などの製造と関連しながら用いられていたと考えられている。原料の砂に混じった金属不純物などのために不透明で青緑色に着色したものが多数出土している。
なお、天然ガラスの利用はさらに歴史をさかのぼる。火山から噴き出した溶岩がガラス状に固まったものは黒曜石と呼ばれ、石器時代から石包丁や矢じりとして利用されてきた。黒曜石は青銅器発明以前において最も鋭利な刃物を作ることのできる物質であったため、交易品として珍重され、産出地域から遠く離れた地域で出土することが珍しくない。青銅器が発明されなかった文明や、発明されても装飾品としての利用にとどまったメソアメリカ文明やインカ文明においては、黒曜石は刃物の材料として重要であり続け、黒曜石を挟んだ木剣や石槍が武装の中心であった。
古代ガラスは砂、珪石、ソーダ灰、石灰などの原料を摂氏1,200度以上の高温で溶融し、冷却・固化するというプロセスで製造されていた。ガラス製造には大量の燃料が必要なため、ガラス工房は森に置かれ、燃料を木に頼っていた。そのため、その森の木を燃やし尽くしたら次の森を探すというように、ガラス工房は各地の森を転々と移動していたのである。ガラス工場が定在するようになったのは石炭と石油が利用されるようになってからである。
エジプトや西アジアでは紀元前2000年代までに、一部の植物灰や天然炭酸ソーダとともにシリカを熱すると融点が下がることが明らかになり、これを利用して焼結ではなく溶融によるガラスの加工が可能になった。これが鋳造ガラスの始まりである。紀元前1550年ごろにはエジプトで粘土の型に流し込んで器を作るコア法によって最初のガラスの器が作られ、特にエジプトでは様々な技法の作品が作製され、西アジアへ製法が広まった。
新アッシリアのニムルドでは象嵌のガラス板数百点が出土している。年代の確実なものとしては、サルゴン2世(紀元前722年~紀元前705年)の銘入りの壷がある。アケメネス朝ペルシアでは、新アッシリアの技法を継承したガラス容器が作られた。紀元前4世紀から同1世紀のエジプトでは王家の要求によって高度な技法のガラスが作られ、ヘレニズム文化を代表する工芸品の一つとなった。
中国では紀元前5世紀には鉛ガラスを主体とするガラス製品や印章が製作されていた。
古代のガラス
ササン朝のカットグラス、伝安閑陵古墳(大阪府羽曳野市)出土。国の重要文化財。東京国立博物館展示。
エジプトのアレクサンドレイアで、宙吹きと呼ばれる製造法が紀元前1世紀の後半に発明された。この技法は現代においても使用されるガラス器製造の基本技法であり、これによって安価なガラスが大量に生産され、食器や保存器として用いられるようになった。この技法はローマ帝国全域に伝わり、ローマガラスと呼ばれるガラス器が大量に生産された。この時期には板状のガラスが鋳造されるようになり、ごく一部の窓にガラスが使用されるようになった。また、ヘレニズム的な豪華なガラスも引き続き製造されていた。しかしローマ帝国の衰退とともにヨーロッパでの技法が停滞した。一方、東ローマ帝国の治める地中海東部やサーサーン朝ペルシャや中国の北魏や南朝では引き続き高水準のガラスが製造されている。
5世紀頃、シリアでクラウン法の原形となる板ガラス製造法が生み出された。これは一旦、手吹き法によりガラス球を造り、遠心力を加えて平板状にするもので、仕上がった円形の板を、適宜、望みの大きさや形に切り出すことができるメリットがあった。また、この技法によって凹凸はあるものの一応平板なガラスを製造することには成功した。
中世のガラス
イスラム圏では8世紀にラスター彩色の技法が登場した。この技法は陶器にも用いられたが、ガラスに先に使われた。9~11世紀の中東では、カット装飾が多用された。また、東ローマ帝国では盛んにステンドグラスが製造された。
8世紀頃から、西ヨーロッパでもガラスの製作が再開した。12世紀には教会にゴシック調のステンドグラスが備わるようになり、13世紀には不純物を除いた無色透明なガラスがドイツ南部やスイス、イタリア北部に伝来した。
良質の原料を輸入できたヴェネツィアのガラス技術は名声を高めたが、大火事の原因となった事と機密保持の観点から1291年にムラーノ島に職人が集中・隔離された。ここでは精巧なガラス作品が数世紀にわたって作られ、15世紀には酸化鉛と酸化マンガンの添加により屈折率の高いクリスタルガラスを完成させた。
操業休止期間の他国への出稼ぎなどによって技法はやがて各地に伝わり、16世紀には北ヨーロッパやスペインでも盛んにガラスが製造された。この頃、中央ドイツやボヘミアでもガラス工房が増えている。これは原料となる灰や燃料の薪が豊富であり、かつ河川沿いにあり都市への物流に好都合だったためである。
また、15世紀には西欧各地でさかんにステンドグラスが製造された。当時の平坦なガラスは吹いて作ったガラスを延べてアイロンがけすることで作られていた。
日本では8世紀〜16世紀までガラス製造が衰退した。
近世
1670年代に入ると、ドイツ・ボヘミア・イギリスの各地でも同時多発的に、無色透明なガラスの製法が完成した。これは精製した原料にチョークまたは酸化鉛を混ぜるものである。この手法によって厚手で透明なガラスが得られ、高度な装飾のカットやグレーヴィングが可能になり、重厚なバロックガラスやロココ様式のガラスが作られた。また、アメリカ合衆国ではヴァージニア州に来たヨーロッパからの移民がガラスの生産を始めた。産業的にはなかなか軌道に乗らなかったが、大規模な資本の投下が可能な18世紀末になると豊富な森林資源を背景に工場生産が行なわれるようになった。18世紀に入ると、フランスで板ガラスの鋳造法が開発され、また同時期に吹きガラス法を利用して大型の円筒を作り、それを切り開いて板ガラスを製造する方法が開発され、この2つの方法は20世紀初頭にいたるまで板ガラス製造の基本技術であり続けた。
日本では徳川吉宗の書物の輸入解禁によって、江戸切子などが作られた。
19世紀に入ると、原料供給や炉に大きな進歩が相次いで起き、ガラス工業の近代化が急速に進んだ。1791年には炭酸ナトリウム(ソーダ灰)の大量生産法がフランスのニコラ・ルブランによって発明され、このルブラン法によって原料供給が大きく改善された。1861年にはベルギーのエルネスト・ソルベーによってより経済的なソルベー法が開発され、さらにソーダ灰の増産は進んだ。ガラスを溶かす窯にも大きな進歩が起きた。フリードリヒ・ジーメンスらが1856年に特許を取得した蓄熱式槽窯を用いた製法により、溶融ガラスの大量供給が可能となった(ジーメンス法)。この平炉法はガラス炉として成功し、以後の工業的ガラス製造の基本となったのち、改良を加え製鋼にも使用された[17]。こうしたガラス供給の増大によって価格が低落し、また瓶や窓ガラス、さらには望遠鏡や顕微鏡といった光学用のガラスなどの用途・需要が急増したため、各国に大規模なガラス工場が相次いで建設されるようになった。1851年には世界初の万国博覧会であるロンドン万国博覧会が開催されるが、そのメイン会場として建設された水晶宮は鉄とガラスによって作られた巨大な建物であり、科学と産業の時代の象徴として注目を浴びた。
19世紀末から20世紀初頭にかけてのアール・ヌーヴォーはガラス工芸にも大きな影響を与え、エミール・ガレやルイス・カムフォート・ティファニーなどの優れたガラス工芸家が現れ多くの作品を残した。
現代
1903年、板ガラス製造用の自動ガラス吹き機がアメリカで開発され、熟練工を必要としないことから各国に急速に普及したが、やがて機械による引上げ式にとってかわられた。1950年代、ピルキントンがフロートガラスの製造を開始した。このフロートガラスの開発によって、現在使用されている板ガラスの基本技術が完成し、安価で安定した質の板ガラスが大量生産されるようになった。
1970年にドイツ人のディスリッヒによって考案されたゾル-ゲル法が、ガラスの新しい製造法として登場した。これまでガラスを製造する方法は原料を摂氏2,000度前後の高温によって溶融する必要があったが、ゾル-ゲル法ではガラスの原料となる化合物や触媒を有機溶液に溶かし込んで、摂氏数十度の環境で加水分解と重合反応を経て、溶融状態を経由せずに直接ガラスを得る。実際は完成したゲルが気泡を含むため、最終的には摂氏1,000度程度に加熱して気泡を抜いてやる必要がある。この方法の発明によって、ガラスに限らず有機無機ハイブリッド材料の創製など、従来では考えられなかった用途が開かれてきている。
近年では摂氏10000度のプラズマを利用して原料を一瞬で溶かす方法が実用化に向けて開発中である。燃料費を削減でき、温室効果ガスの削減に寄与する。
現在、ガラスは食器や構造材のみならず、電子機器、光通信など幅広い分野で生活に必要不可欠なものとなっている。
合わせガラス(あわせガラス、英語:laminated glass)とは、複数の板ガラスの間に樹脂などの中間膜を挟み、接着したガラスのこと。高速道路での衝突事故や列車脱線事故など、窓枠が大きくゆがむほどの衝撃にも耐えられる対貫通性・耐衝撃性を持ち、また割れた際の飛散も起きにくいため、自動車のフロントウインドシールドや路線バスの前面行先表示器ガラス、鉄道車両の前面および側面ガラス、情報機器のモニター用ガラス、防犯ガラスとして用いられる。また、中間膜の特性を変更することにより、紫外線・赤外線の吸収、防音、着色など、様々な付加機能を与えることも可能である。ただし、その性質上リサイクル(分別)し辛く、使用後は産業廃棄物として処理されることが多い。高高度を飛行するジェット旅客機のコックピットでは、合わせガラス式ウィンドシールドの中間層へ透明な電熱シートを加え加熱することで、低温でガラスが脆くなること(低温脆性)と外部表面の氷結を防いでいる。
合わせガラスは、実験室での事故に着想を得たフランスの化学者エドワール・ベネディクトゥスによって1903年に発明された。ガラスフラスコはコロジオン(ニトロセルロース)で膜が出来ており、落とした時砕けはしたものの、ばらばらにはならなかった。ベネディクトゥスは自動車事故における怪我を減らすため、ガラスとプラスチックの複合材料を製造した。これは自動車製造業者にはすぐには採用されなかったが、合わせガラスは第一次世界大戦の間ガスマスクのアイピースに広く使用された。
強化ガラス(きょうかガラス、英語:toughened glass)とは、一般的なフロート板ガラスに比べ3 - 5倍程度の強度を持つガラスである。破損しても粒状になり比較的安全なため、車両や学校などで利用されているが、防犯性能は低い。高い弾性率、剛性率をもちながら透明であるガラスは非常に有用な素材であるが、脆いため衝撃を受けると割れてしまうという致命的な欠点が存在する。そこで、ガラスが容易に割れないようにするために、表面を圧縮して破壊に対する抵抗性を高める方法が考案された。強化ガラスはその構造上、それを加工することが出来ないため、強化のプロセスは製品製造工程の最後で行われる。
強化ガラスはその表面が圧縮によって強化されているため、強化されていないガラスと較べて破壊に至るための力は大きくなるが、圧縮層を超えて割れが進行すると、内部には逆に引っ張りの力が存在しているため、ガラス全体が瞬間的に破砕する。このため、強化ガラスが割れると粉々に割れる特徴があるが、これは割れた時の安全性の点からするとむしろ好ましい特徴である。しかし、破損時にガラス全体が破損してしまうため防犯上の性能は良くない。